Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$
If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :
$50$
$51$
$48$
$49$
If $^{n} C _{9}=\,\,^{n} C _{8},$ find $^{n} C _{17}$
On the occasion of Deepawali festival each student of a class sends greeting cards to the others. If there are $20$ students in the class, then the total number of greeting cards exchanged by the students is
A father with $8$ children takes them $3$ at a time to the Zoological gardens, as often as he can without taking the same $3$ children together more than once. The number of times each child will go to the garden is
Let the number of elements in sets $A$ and $B$ be five and two respectively. Then the number of subsets of $A \times B$ each having at least $3$ and at most $6$ element is :
There are $15$ persons in a party and each person shake hand with another, then total number of hand shakes is